iglidur® - Surface speed

Table 01: Surface speeds (long-term) of the iglidur® bearing in m/s

Materials Rotating oscillating Linear
Standards
iglidur® G 1 0,7 4
iglidur® J 1,5 1,1 8
iglidur® M250 0,8 0,6 2,5
iglidur® W300 1 0,7 4
iglidur® X 1,5 1,1 5
More all-rounder
iglidur® K 1 0,7 3
iglidur® P 1 0,7 3
iglidur® GLW 0,8 0,6 2,5
The endurance runner
iglidur® J260 1 0,7 3
iglidur® J3 1,5 1,1 8
iglidur® J350 1,3 1 4
iglidur® L250 1 0,7 2
iglidur® R 0,8 0,6 3,5
iglidur® D 1,5 1,1 8
iglidur® J200 1 0,7 10
High temperatures
iglidur® V400 0,9 0,6 2
iglidur® X6 1,5 1,1 5,4
iglidur® Z 1,5 1,1 5
iglidur® UW500 0,8 0,6 2
High media resistance
iglidur® H 1 0,7 3
iglidur® H1 2 1,0 5
iglidur® H370 1,2 0,8 4
iglidur® H2 0,9 0,6 2,5
contact with food
iglidur® A180 0,8 0,6 3,5
iglidur® A200 0,8 0,6 2
iglidur® A350 1 0,8 2,5
iglidur® A500 0,6 0,4 1
iglidur® A290 1 0,7 3
iglidur® T220 0,4 0,3 1
Special applications
iglidur® F 0,8 0,6 3
iglidur® H4 1 0,7 1
iglidur® Q 1 0,7 5
iglidur® UW 0,5 0,4 2
iglidur® B 0,7 0,5 2
iglidur® C 1 0,7 2


Table 01: Surface speeds (short-term) of the iglidur® bearing in m/s

Materials Rotating oscillating Linear
Standards
iglidur® G 2 1,4 5,3
iglidur® J 3 2,1 10
iglidur® M250 2 1,4 5
iglidur® W300 2,5 1,8 6
iglidur® X 3,5 2,5 10
More all-rounder
iglidur® K 2 1,4 4
iglidur® P   1,4 4
iglidur® GLW 1 0,7 3
The endurance runner
iglidur® J260 2 1,4 4
iglidur® J3 3 2,1 10
iglidur® J350 3 2,3 8
iglidur® L250 1,5 1,1 3
iglidur® R 1,2 1 5
iglidur® D 3 2,1 10
iglidur® J200 1,5 1,1 15
High temperatures
iglidur® V400 1,3 0,9 3
iglidur® X6 3,5

2,5

10
iglidur® Z 3,5 2,5 6
iglidur® UW500 1,5 1,1 3
High media resistance
iglidur® H 1,5 1,1 4
iglidur® H1 2,5 1,5 7
iglidur® H370 1,5 1,1 5
iglidur® H2 1 0,7 3
contact with food
iglidur® A180 1,2 1 5
iglidur® A200 1,5 1,1 3
iglidur® A350 1,2 0,9 3
iglidur® A500 1 0,7 2
iglidur® A290 2 1,4 4
iglidur® T220 1 0,7 2
Special applications
iglidur® F 1,5 1,1 5
iglidur® H4

1,5

1,1 2
iglidur® Q 2 1,4 6
iglidur® UW 1,5 1,1 3
iglidur® B 1 0,7 3
iglidur® C 1,5 1,1 3

Surface speed

The peripheral speed is always significant in plain bearings. Crucial is not the absolute rotary speed, but the relative speed between the shaft and the bearing. The surface speed is expressed in meters per second [m/s] and calculated from the rotary speed n [rpm] with the following formula. Rotations: v = n * d1 * π/(60 * 1000) [m/s] Pivoting motions: v = d1 * π * 2*β/360 * f/1000 [m/s] Present is

 

d1 Inner diameter of bearing [mm]
f Frequency [s]
β Angle [°]
n Revolutions per minute
In varying speeds, like it happens in pivoting motions for example, the average surface speed v is standard (see the above-mentioned formula).

Permitted surface speeds

iglidur® bearings have been developed for low to medium surface speeds in continuous operation.

Table 01 shows the permitted surface speeds of the iglidur® bearing for rotating, pivoting and linear motions.

These surface speeds are limit values under the assumed minimum pressure loads of the bearing.
In practice these limit values are not often reached due to the alternating effect of influences. Every increase of the pressure load inevitably leads to a lowering of the permitted surface speeds and vice versa.

The limit of the speeds is specified by the heating of the bearing. That is also the reason for the different speeds for the different types of motion.
In linear motions more heat can be conducted over the shaft, as the bearing uses a longer area on the shaft.

Surface speed and wear

Considerations of the permitted surface speeds should always also include the wear resistance of the bearing. High surface speeds automatically bring in correspondingly high glide paths. With the surface speed, it thus increases not only the wear rate, but also the absolute wear in total.

Surface speed and coefficient of friction

The coefficient of friction of bearings in practice depends on the surface speed. High surface speeds results in a higher coefficient of friction than low speeds. Figure 08 illustrates this connection in the example of a steel shaft (Cf53) with a load of 0.7 MPa.




Fig. 08: Coefficients of friction of iglidur® materials at various surface speeds (Cf53 shaft, rotating)

 

Picture 01: Wear and friction tests with the example of an igubal® pillow block bearing

 

Picture 02: Determination of the maximum surface speeds of an igubal® rod end bearing at high rotational and surface speeds (shaft Cf53, rotary)

 

More than 100,000 products available! Delivery and consultation Mon-Fri from 7am-8pm and Sat from 8am-12pm!


Contact
Other contact options

+49 (0) 2203-9649-0
Send e-mail to igus®
igus® contact
Back to the top